Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.648
1.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38602916

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Arginine , Ligases , Arginine/metabolism , Citrulline/metabolism , Ammonia , Ornithine/genetics , Adenosine Triphosphate/metabolism , Phosphates , Adenosine , Catalysis
2.
Proc Natl Acad Sci U S A ; 121(17): e2304199121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38630712

Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.


Aminosalicylic Acids , Arthritis, Rheumatoid , Monocytes , Humans , Protein-Arginine Deiminases , Monocytes/metabolism , Autoantigens , Autoantibodies , Fibrinogen/metabolism , Citrulline/metabolism
3.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article En | MEDLINE | ID: mdl-38542155

Peptidylarginine deiminases (PADs or PADIs) catalyze the conversion of positively charged arginine to neutral citrulline, which alters target protein structure and function. Our previous work established that gonadotropin-releasing hormone agonist (GnRHa) stimulates PAD2-catalyzed histone citrullination to epigenetically regulate gonadotropin gene expression in the gonadotrope-derived LßT2 cell line. However, PADs are also found in the cytoplasm. Given this, we used mass spectrometry (MS) to identify additional non-histone proteins that are citrullinated following GnRHa stimulation and characterized the temporal dynamics of this modification. Our results show that actin and tubulin are citrullinated, which led us to hypothesize that GnRHa might induce their citrullination to modulate cytoskeletal dynamics and architecture. The data show that 10 nM GnRHa induces the citrullination of ß-actin, with elevated levels occurring at 10 min. The level of ß-actin citrullination is reduced in the presence of the pan-PAD inhibitor biphenyl-benzimidazole-Cl-amidine (BB-ClA), which also prevents GnRHa-induced actin reorganization in dispersed murine gonadotrope cells. GnRHa induces the citrullination of ß-tubulin, with elevated levels occurring at 30 min, and this response is attenuated in the presence of PAD inhibition. To examine the functional consequence of ß-tubulin citrullination, we utilized fluorescently tagged end binding protein 1 (EB1-GFP) to track the growing plus end of microtubules (MT) in real time in transfected LßT2 cells. Time-lapse confocal microscopy of EB1-GFP reveals that the MT average lifetime increases following 30 min of GnRHa treatment, but this increase is attenuated by PAD inhibition. Taken together, our data suggest that GnRHa-induced citrullination alters actin reorganization and MT lifetime in gonadotrope cells.


Actins , Citrullination , Mice , Animals , Actins/metabolism , Tubulin/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism , Citrulline/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hydrolases/metabolism
4.
Mol Nutr Food Res ; 68(6): e2300723, 2024 Mar.
Article En | MEDLINE | ID: mdl-38425278

SCOPE: Oxidative stress caused by iron overload tends to result in intestinal mucosal barrier dysfunction and intestinal microbiota imbalance. As a neutral and nonprotein amino acid, L-Citrulline (L-cit) has been implicated in antioxidant and mitochondrial amelioration properties. This study investigates whether L-cit can alleviate iron overload-induced intestinal injury and explores the underlying mechanisms. METHODS AND RESULTS: C57BL/6J mice are intraperitoneally injected with iron dextran, then gavaged with different dose of L-cit for 2 weeks. L-cit treatment significantly alleviates intestine pathological injury, oxidative stress, ATP level, and mitochondrial respiratory chain complex activities, accompanied by ameliorating mitochondrial quality control. L-cit-mediated protection is associated with the upregulation of Glutathione Peroxidase 4 (GPX4) expression, inhibition Nuclear Receptor Coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, and improvement of gut microbiota. To investigate the underlying molecular mechanisms, Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2) cells are treated with L-cit or AMP-activated Protein Kinase (AMPK) inhibitor. AMPK signaling has been activated by L-cit. Notably, Compound C abolishes L-cit's protection on intestinal barrier, mitochondrial function, and antioxidative capacity in IPEC-J2 cells. CONCLUSION: L-cit may restrain ferritinophagy and ferroptosis to regulate iron metabolism, and induce AMPK pathway activation, which contributes to exert antioxidation, ameliorate iron metabolism and mitochondrial quality control, and improve intestinal microbiota. L-cit is a promising therapeutic strategy for iron overload-induced intestinal injury.


Iron Overload , Microbiota , Mice , Animals , Swine , AMP-Activated Protein Kinases/metabolism , Citrulline/metabolism , Citrulline/pharmacology , Mice, Inbred C57BL , Intestines , Antioxidants/metabolism , Iron Overload/metabolism , Iron/metabolism , Mitochondria
5.
Biochem Biophys Res Commun ; 704: 149668, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38401303

Rheumatoid arthritis is an autoimmune disease whose early onset correlates with dysregulated citrullination, a process catalyzed by peptidylarginine deiminase isoform 4 (PADI-4). Here, we report that PADI-4 is a novel target of vitamin B12, a water-soluble vitamin that serves as a cofactor in DNA synthesis and the metabolism of fatty and amino acids. Vitamin B12 preferentially inhibited PADI-4 over PADI-2 with comparable inhibitory activity to the reference compound Cl-amidine in enzymatic inhibition assays, and reduced total cellular citrullination levels including that of histone H3 citrullination mediated by PADI-4. We also demonstrated that hydroxocobalamin, a manufactured form of vitamin B12, significantly ameliorated the severity of collagen type II antibody induced arthritis (CAIA) in mice and diminished gene expression of the rheumatoid inflammatory factors and cytokines IL17A, TNFα, IL-6, COX-II and ANXA2, as well PADI-4. Therefore, the use of vitamin B12 to treat rheumatoid arthritis merits further study.


Arthritis, Rheumatoid , Vitamin B 12 , Mice , Animals , Protein-Arginine Deiminases/metabolism , Hydrolases/metabolism , Protein-Arginine Deiminase Type 4 , Citrulline/metabolism , Antibodies , Collagen
6.
PLoS One ; 19(2): e0298334, 2024.
Article En | MEDLINE | ID: mdl-38306371

INTRODUCTION: Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD: Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS: After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION: Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.


Antioxidants , Reperfusion Injury , Rats , Male , Animals , Antioxidants/metabolism , Vitamins/pharmacology , Glutamine/pharmacology , Glutamine/metabolism , Citrulline/pharmacology , Citrulline/metabolism , Rats, Wistar , Oxidative Stress , Reperfusion Injury/metabolism , Cytokines/metabolism , Reperfusion , Ischemia/complications , Inflammation/drug therapy , Inflammation/complications , DNA/metabolism , Dietary Supplements
7.
Curr Opin Clin Nutr Metab Care ; 27(1): 61-69, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37997794

PURPOSE OF REVIEW: Stable isotope methods have been used for many years to assess whole body protein and amino acid kinetics in critically ill patients. In recent years, new isotope approaches and tracer insights have been developed. The tracer pulse approach has some advantages above the established primed-continuous tracer infusion approach because of the high amount of metabolic information obtained, easy applicability, and low tracer costs. Effects of disease severity and sex on amino acid kinetics in ICU patients will also be addressed. RECENT FINDINGS: Current knowledge was synthesized on specific perturbations in amino acid metabolism in critically ill patients, employing novel methodologies such as the pulse tracer approach and computational modeling. Variations were evaluated in amino acid production and linked to severity of critical illness, as measured by SOFA score, and sex. Production of the branched-chain amino acids (BCAAs), glutamine, tau-methylhistidine and hydroxyproline were elevated in critical illness, likely related to increased transamination of the individual BCAAs or increased breakdown of proteins. Citrulline production was reduced, indicative of impaired gut mucosa function. Sex and disease severity independently influenced amino acid kinetics in ICU patients. SUMMARY: Novel tracer and computational approaches have been developed to simultaneously measure postabsorptive kinetics of multiple amino acids that can be used in critical illness. The collective findings lay the groundwork for targeted individualized nutritional strategies in ICU settings aimed at enhancing patient outcomes taking into account disease severity and sex.


Critical Illness , Proteins , Humans , Amino Acids, Branched-Chain/metabolism , Citrulline/metabolism , Isotopes , Proteins/metabolism , Male , Female
8.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958599

Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.


Carcinoma, Renal Cell , Citrullus , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Transcriptome , Citrullus/genetics , Fruit/metabolism , Citrulline/metabolism , Caspases/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism
9.
Ageing Res Rev ; 92: 102139, 2023 Dec.
Article En | MEDLINE | ID: mdl-38007048

BACKGROUND: Alterations in nitric oxide (NO) synthesis have been reported in Alzheimer's disease and vascular dementia. However, as the measurement of NO in biological samples is analytically challenging, alternative, stable circulatory biomarkers of NO synthesis may be useful to unravel new pathophysiological mechanisms and treatment targets in dementia. METHODS: We conducted a systematic review and meta-analysis of the circulating concentrations of arginine metabolites linked to NO synthesis, arginine, citrulline, asymmetric (ADMA) and symmetric (SDMA) dimethylarginine, and ornithine, in Alzheimer's disease and vascular dementia. We searched for relevant studies in PubMed, Scopus, and Web of Science from inception to the 31st of May 2023. The JBI checklist and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. RESULTS: In 14 selected studies, there were no significant between-group differences in arginine and ornithine concentrations. By contrast, compared to controls, patients with dementia had significantly higher ADMA (standard mean difference, SMD=0.62, 95% CI 0.06-1.19, p = 0.029), SDMA (SMD=0.70, 95% CI 0.34-1.35, p<0.001), and citrulline concentrations (SMD=0.50, 95% CI 0.08-0.91, p = 0.018). In subgroup analysis, the effect size was significantly associated with treatment with cholinesterase inhibitors and/or antipsychotics for ADMA, and underlying disorder (Alzheimer's disease), study continent, and analytical method for citrulline. CONCLUSION: Alterations in ADMA, SDMA, and citrulline, biomarkers of NO synthesis, may be useful to investigate the pathophysiology of different forms of dementia and identify novel therapeutic strategies. (PROSPERO registration number: CRD42023439528).


Alzheimer Disease , Dementia, Vascular , Humans , Citrulline/metabolism , Arginine/metabolism , Biomarkers/metabolism , Ornithine
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220240, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778377

Protein citrullination is a post-translational modification (PTM) that is catalysed by the protein arginine deiminase (PAD) family of enzymes. This PTM involves the transformation of an arginine residue into citrulline. Protein citrullination is associated with several physiological processes, including the epigenetic regulation of gene expression, neutrophil extracellular trap formation and DNA damage-induced apoptosis. Aberrant protein citrullination is relevant to several autoimmune and neurodegenerative diseases and certain forms of cancer. PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis (RA), lupus, atherosclerosis and ulcerative colitis. In RA, anti-citrullinated protein antibodies can be detected prior to disease onset and are thus a valuable diagnostic tool for RA. Notably, citrullinated proteins may serve more generally as biomarkers of specific disease states; however, the identification of citrullinated protein residues remains challenging owing to the small 1 Da mass change that occurs upon citrullination. Herein, we highlight the progress made so far in the development of pan-PAD and isozyme selective inhibitors as well as the identification of citrullinated proteins and the site-specific incorporation of citrulline into proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Arthritis, Rheumatoid , Citrullination , Humans , Citrulline/genetics , Citrulline/metabolism , Epigenesis, Genetic , Proteins/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Protein-Arginine Deiminases/genetics , Protein-Arginine Deiminases/metabolism , Protein Processing, Post-Translational
11.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220477, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778379

Peptidylarginine deiminase IV (PAD4) post-translationally converts arginine residues in proteins to citrullines and is implicated in playing a central role in the pathogenesis of several diseases. Although PAD4 was historically thought to be a nuclear enzyme, recent evidence has revealed a more complex localization of PAD4 with evidence of additional cytosolic and cell surface localization and activity. However, the mechanisms by which PAD4, which lacks conventional secretory signal sequences, traffics to extranuclear localizations are unknown. In this study, we show that PAD4 was enriched in the organelle fraction of monocytes with evidence of citrullination of organelle proteins. We also demonstrated that PAD4 can bind to several cytosolic, nuclear and organelle proteins that may serve as binding partners for PAD4 to traffic intracellularly. Additionally, cell surface expression of PAD4 increased with monocyte differentiation into monocyte-derived dendritic cells and co-localized with several endocytic/autophagic and conventional secretory pathway markers, implicating the use of these pathways by PAD4 to traffic within the cell. Our results suggest that PAD4 is expressed in multiple subcellular localizations and may play previously unappreciated roles in physiological and pathological conditions. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Monocytes , Protein-Arginine Deiminase Type 4 , Humans , Citrulline/metabolism , Monocytes/enzymology , Proteomics
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220249, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778385

One of the main strategies of neutrophils in responding to microbial infections is the formation of neutrophil extracellular traps (NETs). NETs are web-like structures of decondensed chromatin associated with antimicrobial proteins. Citrullination plays an important role during NET formation and a substantial fraction of NET-associated proteins appeared to be citrullinated. The release of citrullinated intracellular proteins from netting neutrophils led to the hypothesis that the production of anti-citrullinated protein autoantibodies by autoimmune patients, in particular patients with rheumatoid arthritis, might be initiated when citrullinated NET components are not properly cleared and are exposed to the immune system. Here, we discuss the processes that lead to NET formation, including the role of peptidylarginine deiminase activation and our current knowledge on citrullinated NET-associated proteins. Citrulline-dependent epitopes do not appear to play a major role in the recognition of NETs by autoantibodies from rheumatoid arthritis and systemic lupus erythematosus patients, even though anti-NET autoantibodies are frequently observed in sera from these patients. The neutrophil proteases associated with NETs have a major impact on the integrity of NET-associated proteins when NET formation is induced by activating isolated human neutrophils. Cleavage/degradation of these proteins also resulted in a strong reduction of the reactivity with autoantibodies. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Arthritis, Rheumatoid , Citrulline , Extracellular Traps , Humans , Arthritis, Rheumatoid/metabolism , Autoantibodies/metabolism , Citrulline/metabolism , Extracellular Traps/metabolism , Neutrophils
13.
Toxicol Appl Pharmacol ; 478: 116708, 2023 11 01.
Article En | MEDLINE | ID: mdl-37778480

Pentachlorophenol (PCP) is a ubiquitous environmental toxicant with various adverse effects. Although its neurotoxicity has been reported, the underlying mechanism and subsequent detoxification remain unclear. In this study, embryos and adult zebrafish were exposed to PCP to determine its potential neurotoxic mechanism and protective indicators. The survival rate, heart rate, mobility time, active status and moving distance were significantly decreased in larvae after 30 µg/L PCP exposure. Likewise, the mobile time, latency to the first movement, velocity and moving distance of adult zebrafish were significantly reduced by PCP exposure. Untargeted metabolomics analysis of larvae revealed that arginine and proline metabolism was the primary pathway affected by PCP exposure, reflected by increased proline and decreased citrulline (CIT) contents, which were confirmed by quantitative data. PCP exposure suppressed the conversion from arginine to CIT in larvae by downregulating the expression of nos1 and nos2a. Ornithine content was increased in the brains and intestines of adult zebrafish after PCP exposure, which inhibited ornithine catabolism to CIT by downregulating otc, resulting in reduced CIT. Intriguingly, CIT supplementation significantly restored the neurobehavioral defects induced by PCP in larvae and adult zebrafish. CIT supplementation upregulated the expression of ef1α and tuba1 in larvae and inhibited the downregulation of ef1α in the brains of adult zebrafish. Taken together, these results indicated that CIT supplementation could protect against PCP-induced neurotoxicity by upregulating the expression of genes involved in neuronal development and function.


Pentachlorophenol , Animals , Pentachlorophenol/pharmacology , Pentachlorophenol/toxicity , Zebrafish/metabolism , Citrulline/metabolism , Citrulline/pharmacology , Larva , Arginine/metabolism , Arginine/pharmacology , Ornithine/metabolism , Ornithine/pharmacology , Proline/metabolism , Proline/pharmacology
14.
Expert Rev Mol Diagn ; 23(10): 895-911, 2023.
Article En | MEDLINE | ID: mdl-37578277

INTRODUCTION: The serological biomarker anti-citrullinated protein antibodies (ACPAs) may have several functions but is especially important for the diagnosis of rheumatoid arthritis (RA) along with clinical symptoms. AREAS COVERED: This review provides an overview of ACPAs, which are useful in RA diagnostics and may improve our understanding of disease etiology. PubMed was searched with combinations of words related to antibodies recognizing epitopes containing the post-translationally modified amino acid citrulline in combination with rheumatoid arthritis; cyclic citrullinated peptide, CCP, anti-CCP, anti-citrullinated protein antibodies, ACPA, citrullination, peptide/protein arginine deiminase, PAD, filaggrin, vimentin, keratin, collagen, perinuclear factor, EBNA1, EBNA2, and others. From this search, we made a qualitative extract of publications relevant to the discovery, characterization, and clinical use of these antibodies in relation to RA. We highlight significant findings and identify areas for improvement. EXPERT OPINION: ACPAs have high diagnostic sensitivity and specificity for RA and recognize citrullinated epitopes from several proteins. The best-performing single epitope originates from Epstein-Barr Virus nuclear antigen 2 and contains a central Cit-Gly motif, which is recognized by ACPAS when located in a flexible peptide structure. In addition, ACPAs may also have prognostic value, especially in relation to early treatment, although ACPAs' main function is to aid in the diagnosis of RA.


Arthritis, Rheumatoid , Epstein-Barr Virus Infections , Humans , Anti-Citrullinated Protein Antibodies/therapeutic use , Autoantibodies , Citrulline/metabolism , Citrulline/therapeutic use , Herpesvirus 4, Human/metabolism , Peptides , Arthritis, Rheumatoid/diagnosis , Epitopes/therapeutic use , Biomarkers
15.
PLoS One ; 18(8): e0289688, 2023.
Article En | MEDLINE | ID: mdl-37540683

This study was to investigate the effects of ammonia and manganese in the metabolism of minimal hepatic encephalopathy (MHE). A total of 32 Sprague-Dawley rats were divided into four subgroups: chronic hyperammonemia (CHA), chronic hypermanganese (CHM), MHE and control group (CON). 1H-NMR-based metabolomics was used to detect the metabolic changes. Sparse projection to latent structures discriminant analysis was used for identifying and comparing the key metabolites. Significant elevated blood ammonia were shown in the CHA, CHM, and MHE rats. Significant elevated brain manganese (Mn) were shown in the CHM, and MHE rats, but not in the CHA rats. The concentrations of γ-amino butyric acid (GABA), lactate, alanine, glutamate, glutamine, threonine, and phosphocholine were significantly increased, and that of myo-inositol, taurine, leucine, isoleucine, arginine, and citrulline were significantly decreased in the MHE rats. Of all these 13 key metabolites, 10 of them were affected by ammonia (including lactate, alanine, glutamate, glutamine, myo-inositol, taurine, leucine, isoleucine, arginine, and citrulline) and 5 of them were affected by manganese (including GABA, lactate, myo-inositol, taurine, and leucine). Enrichment analysis indicated that abnormal metabolism of glutamine and TCA circle in MHE might be affected by the ammonia, and abnormal metabolism of GABA might be affected by the Mn, and abnormal metabolism of glycolysis and branched chain amino acids metabolism might be affected by both ammonia and Mn. Both ammonia and Mn play roles in the abnormal metabolism of MHE. Chronic hypermanganese could lead to elevated blood ammonia. However, chronic hyperammonemia could not lead to brain Mn deposition.


Hepatic Encephalopathy , Hyperammonemia , Rats , Animals , Hepatic Encephalopathy/diagnosis , Glutamine/metabolism , Manganese/metabolism , Ammonia/metabolism , Isoleucine , Leucine/metabolism , Citrulline/metabolism , Rats, Sprague-Dawley , Brain/metabolism , Glutamic Acid/metabolism , Alanine/metabolism , gamma-Aminobutyric Acid/metabolism , Taurine/metabolism , Lactic Acid/metabolism , Hyperammonemia/metabolism , Metabolomics , Arginine/metabolism , Inositol/metabolism
16.
Nutrients ; 15(13)2023 Jun 21.
Article En | MEDLINE | ID: mdl-37447153

Essential amino acids (AAs) play a key role in stimulating intestinal adaptation after massive small gut resection. The nutritional effect of dietary amino acids during intestinal regrowth has received considerable attention in recent years. This review explores the significance of dietary amino acids in the nutritional management of infants and children with intestinal failure and short bowel syndrome (SBS) as reported in the medical literature over the last three decades. A literature search was conducted using electronic databases. Breast milk emerged as the first-line enteral regimen recommended for infants with SBS. Hydrolyzed formulas (HFs) or amino acid formulas (AAFs) are recommended when breast milk is not available or if the infant cannot tolerate whole protein milk. The superiority of AAFs over HFs has never been demonstrated. Although glutamine (GLN) is the main fuel for enterocytes, GLN supplementation in infants with SBS showed no difference in the child's dependence upon parenteral nutrition (PN). Circulating citrulline is considered a major determinant of survival and nutritional prognosis of SBS patients. Early enteral nutrition and dietary supplementation of AAs following bowel resection in children are essential for the development of intestinal adaptation, thereby eliminating the need for PN.


Short Bowel Syndrome , Infant , Female , Humans , Child , Short Bowel Syndrome/metabolism , Intestine, Small/metabolism , Glutamine/metabolism , Citrulline/metabolism , Dietary Proteins/metabolism
17.
Adv Exp Med Biol ; 1428: 127-148, 2023.
Article En | MEDLINE | ID: mdl-37466772

In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.


Pre-Eclampsia , Female , Pregnancy , Humans , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Placenta/metabolism , Citrulline/therapeutic use , Citrulline/metabolism , Citrulline/pharmacology , Arginine/metabolism , Vascular Endothelial Growth Factor A/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Dietary Supplements , Vascular Endothelial Growth Factor Receptor-1/metabolism
18.
Mol Neurobiol ; 60(11): 6748-6756, 2023 Nov.
Article En | MEDLINE | ID: mdl-37480499

The deimination or citrullination of arginine residues in the polypeptide chain by peptidylarginine deiminase 4 alters the charge state of the polypeptide chain and affects the function of proteins. It is one of the main ways of protein post-translational modifications to regulate its function. Peptidylarginine deiminase 4 is widely expressed in multiple tissues and organs of the body, especially the central nervous system, and regulates the normal development of organisms. The abnormal expression and activation of peptidylarginine deiminase 4 is an important pathological mechanism for the occurrence and development of central nervous system diseases such as multiple sclerosis, Alzheimer's disease, cerebral ischemia reperfusion injury, and glioblastoma.


Central Nervous System Diseases , Hydrolases , Humans , Protein-Arginine Deiminases/metabolism , Hydrolases/genetics , Citrullination , Proteins/metabolism , Protein Processing, Post-Translational , Peptides/metabolism , Citrulline/metabolism
19.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188931, 2023 09.
Article En | MEDLINE | ID: mdl-37315720

Peptide arginine deiminase 2(PAD2) catalyzes the conversion of arginine residues on target proteins to citrulline residues in the presence of calcium ions. This particular posttranslational modification is called citrullination. PAD2 can regulate the transcriptional activity of genes through histone citrullination and nonhistone citrullination. In this review, we summarize the evidence from recent decades and systematically illustrate the role of PAD2-mediated citrullination in tumor pathology and the regulation of tumor-associated immune cells such as neutrophils, monocytes, macrophages and T cells. Several PAD2-specific inhibitors are also presented to discuss the feasibility of anti-PAD2 therapy to treat tumors and the urgent problems to be solved. Finally, we review some recent developments in the development of PAD2 inhibitors.


Citrullination , Protein Processing, Post-Translational , Humans , Citrulline/metabolism
20.
J Biol Chem ; 299(7): 104944, 2023 07.
Article En | MEDLINE | ID: mdl-37343703

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Arginine , Bacillus subtilis , Ornithine , Sigma Factor , Adenosine Triphosphate/metabolism , Arginine/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citrulline/metabolism , Ornithine/metabolism , Sigma Factor/metabolism , Transcription Factors/metabolism
...